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Abstract: Earth’ s ionosphere is an important medium for navigation, communication, and radio wave transmission. Total
Electron Content (TEC) is a descriptive quantify for ionospheric research. However, the traditional empirical model could not
fully consider the changes of TEC time series, the prediction accuracy level of TEC data performed not high. In this study, an
improved Extreme Learning Machine ( ELM) model is proposed for ionospheric TEC prediction. Improvements involved the use of
Empirical Mode Decomposition (EMD) and a Fuzzy C-Means (FCM) clustering algorithm to pre-process data used as input to
the ELM model. The proposed model fully uses the TEC data characteristics and expected to perform better prediction accuracy.
TEC measurements provided by the Centre for Orbit Determination in Europe (CODE) were used to evaluate the performance of
the improved ELM model in terms of prediction accuracy, applicable latitude, and the number of required training samples.
Experimental results produced a Mean Relative Error (MRE) and a Root Mean Square Error (RMSE) of 8.5% and 1.39 TECU,
respectively, outperforming the ELM algorithm ( RMSE =2.33 TECU and MRE=17.1%). The improved ELM model exhibited
particularly high prediction accuracy in mid-latitude regions, with a mean relative error of 7.6%. This value improved further as
the number of available training data increased and when 20-doys data were trained, achieving a mean relative error of 4.9%.
These results suggest the proposed model offers higher prediction accuracy than conventional algorithms.
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. , and earthquake predic-
1 Introduction

tion ', TEC values could also cause delays in

TEC is the total number of electrons measured at the
intersection of a cylinder of the Earth’ s ionosphere
and the cylinder with a 1 square meter base area of
the atmosphere along the signal path occurring be-
Global Navigation Satellite
(GNSS ) satellite and the GNSS receiver on the
earth' "™,

tween the Systems
Ionospheric TEC was first proposed by
scholars in the 1960s and is measured in TEC Units
(TECU) , where 1 TECU=10"® electrons/m>"**'. Ex-
isting TEC prediction research primarily consists of
studies on ionospheric variational characteristics'’.
Applications have been reported for navigation and

positioningm , investigating factors influencing iono-
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GNSS signals and reduce the accuracy of estimated
positions. As such, the prediction of TEC is critical
for ionospheric studies''*""’.

Research in ionospheric TEC modeling has fo-
cused primarily on improving prediction accuracy.

For example, Jakobsen et al.'"™

used Singular Value
Decomposition (SVD) to analyze a TEC time series
over nine years, using a robust dataset calculated by
Kalman filtering. The authors determined time-
varying characteristics for the ionosphere and predic-
ted a future annual model. An et al.'™” divided iono-
spheric TEC into a trend term and a non-trend term.

The authors then used a Fourier triangle series and
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an Auto Regressive and Moving Average ( ARMA )
model to predict the trend and non-trend terms, re-
spectively. These terms were then used to reconstruct
the final predicted TEC values. Experimental results
showed that a combination of these two models was
effective for TEC prediction over a large range using
only a few parameters. Liu et al.'*’ combined wavelet
analysis with an Auto Regressive Integrated Moving
Average ( ARIMA) model to develop the WARIMA
model. Experiments showed this combined approach
outperformed the single ARIMA algorithm.

Lu et al.”" combined SVD with ARMA to de-
compose an ionospheric TEC time series and forecast
components. Results demonstrated that the prediction
accuracy of a single model was improved by
including SVD. However, there was no considerable
improvement in accuracy for small numbers of compo-
nents, while large collections suffered from the pres-
ence of cumulative errors that led to a decline in con-
sistency. Tang et al.”””' decomposed an ionospheric
TEC time series using Empirical Mode Decomposi-
tion ( EMD ). This approach utilized ionospheric
TEC grid data published by the International GNSS
Service (IGS) at varying times and locations. The
prediction of each decomposed series was conducted
using the ARMA model. Experimental results showed
an increase in relative prediction accuracy compared
with single time series models. Each of the techniques
discussed above improved TEC prediction accuracy
using pre-processing steps.

Wang et al.'*' organically combined a Genetic
Algorithm ( GA) with a Neural Network (NN) to
optimize the initial weights used by the GA, in order
to avoid the local minimum problem that often occurs
during NN training. Results demonstrated that this
hybrid GA-NN algorithm offered high accuracy and
reliability in predicting ionospheric TEC. The model
also outperformed the basic NN and the International
Reference Tonosphere (IRT) model. Liu et al.'** in-
troduced a Wavelet Neural Network ( WNN) for ion-
ospheric TEC prediction and used ionospheric TEC
information released by IGS as experimental data.
Results indicated that this combined model with pre-

processing achieved high short-term prediction accu-

racy.

Cesaroni et al.'” developed a model to forecast
TEC values, the Middle East Technical University
neural network ( METU-NN) model. The METU-NN
is a data-driven neural network consisting of one hid-
den layer and several neurons. Acharya et al.'*®
used an adaptive recurrent neural network and an in-
situ learning algorithm to predict TEC in non-
anomalous areas. Wang et al. improved on the single
NN prediction model by weighting and pre-processing

78] Results indicated the optimized model

the data'
offered better prediction performance than the single
NN. Huang et al.'”’ used TEC data from four GNSS
reference stations ( BJFS, XIAN, WUHN, and
KUNM—from 2007 to 2011) to improve a back-
propagation NN prediction model using a GA.
Results showed the improved model to be highly reli-
able. Sabzehee et al."™’ demonstrated that regional
ionospheric modeling using an artificial neural
network ( ANN) is a viable technique for predicting
TEC at both single- and double-frequency GPS receivers.
The ANN demonstrated acceptable capability and
flexibility in modeling and predicting TEC values.
Tebabal et al.”®"! developed a neural network-based
regional ionospheric model using GPS-TEC data from
modeled and

predicted seasonal ionospheric TEC using an ANN.

Eastern Africa. Inyurt et al.™”
The model produced more accurate predictions in
winter and autumn than in summer or spring, with
RMSE and TEC values of 3.92 and 3.97, respectively.

Previous studies have also shown that EMD can
improve the performance of forecasting models'*’. In
addition, neural network-based prediction performed
better than time series modeling. Further study of the
EMD algorithm suggests the Intrinsic Mode Function
(IMF) suffers from issues such as aliasing that can
decrease the accuracy of the prediction model .
The use of Fuzzy C-Means (FCM) clustering was
proposed after EMD to reduce the impact of aliasing.
Each group of IMF functions was pre-processed by
FCM clustering and the resulting data were used to
train the NN model.

Extreme Learning Machine ( ELM ) models

have achieved high prediction accuracy in multiple
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fields. However, the number of hidden layer neurons
and the incentive function used by the algorithm may
reduce its prediction accuracy if not sufficiently opti-

mized ¥

. As a result, empirical models are often
used for such predictions though they are not appli-
cable in all situations. As such, in this paper, we
propose an improved ELM model that selects a spe-
cific number of hidden layer neurons and the excita-
tion function to be used in a NN. We selected the
optimal neural network model by traversing the num-
ber of all neurons. An ionospheric TEC time series is
first acquired and is then decomposed using the
EMD algorithm. Decomposed IMF functions are clus-
tered and are then pre-processed using the FCM al-
gorithm. Finally, the ELM model ( with an optimal
number of hidden layer neurons and a pre-selected
excitation function) is used to predict a TEC time
series. The proposed model fully excavates the TEC
data characteristics and expects to perform better
prediction accuracy. This study focuses on evaluating
the prediction accuracy, latitude dependence, and
training sample length sensitivity for the improved

ELM model.
2 Data and Methods

2.1 The empirical mode decomposition algo-
rithm
Ionospheric TEC data consist of time series with non-
stationary and non-linear characteristics. As such, it
is difficult to describe the corresponding signal fea-
tures using traditional analysis. However, the EMD
method provides a reasonable definition for instanta-
neous frequency and can therefore describe the phys-
ical meaning of a TEC time series'™®/. The data
x(t) decomposed by the EMD algorithm can be re-

presented as follows

(1) = Ye(n +r,(0) ()

where ¢,(t) is the IMF component of different TEC
data groups and r, (t) is a trend term for the TEC
data, representing the average signal near a linear
mode trend.

2.2 The fuzzy C-means clustering algorithm

A direct use of IMF component data ( decomposed

by the EMD algorithm) can lead to several issues,
such as the prediction model requiring increasing in-
put variables or correlations occurring between the
input and time series data. These effects can reduce
the operational efficiency and generalizability of the
prediction model. To resolve these issues, an FCM
algorithm was introduced into the combination model
for dimension-reducing clustering, used for iono-
spheric TEC data preprocessing' "', This FCM al-
gorithm calculates the membership degree of each
variable and cluster center, respectively expressed

as follows ***

c d"(x.,z.) i) !
(n - DA A , =12,
i :;Md“%xi,znj ]} l '
(2)

zn‘ (ILLSHI) )m . x.
(1+1) i=1 ! l

zj = n ’
(M.(.[+l) ) m
2 (u
where || + || is a suitable matrix norm. When || z(z+

1)-z(t) || <, £<0.01 and the clustering is consid-

i=1,2,--,n(3)

ered to be complete as the center converges.
2.3 The ionospheric TEC prediction model
Conventional Neural Network (CNN) algorithms use
empirical methods to select learning rates appropriate
for experimental data and to prevent the network
from over-training and converging to a local
minimum. In contrast, the ELM model only re-quires
the number of neurons in the hidden layer to be
specified. In this study, the ELM model with added
pretreatment was applied to TEC prediction for the
first time. During the training process, the model
randomly selects input parameters in the hidden
layer and determines output parameters by solving
for the Moore-Penrose generalized inverse of the out-
put matrix in the hidden layer. This approach signifi-
cantly increases training speed with better generaliz-
ability than that of CNNs. As such, the ELM model
is widely used in traffic flow'®’, short-term wind
speed ! and food-price forecasting'*’’. In this pa-
per, an improved ELM model with pretreatment is
applied to ionospheric TEC prediction.

An appropriate excitation function and neuron

quantity are the primary factors affecting ELM model
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performance. Accurate prediction results require opti-
mized neuron counts in the hidden layer and specific
types of excitation functions. These parameters can be
chosen by comparing the prediction errors obtained
with different network architectures in this paper.

(1) Neuron quantities in the hidden layer.

The number of neurons in the hidden layer is
closely correlated with model prediction accuracy,
which can be improved by optimizing the neuron
count for specific experimental data. However,
model complexity also increases with neuron quantity
and excessive complexity can increase runtimes and
even reduce prediction accuracy. As such, determi-
ning the optimal number of neurons is an important
factor affecting model performance. A variety of neu-
ron selection techniques have been proposed in the
literature, including pruning, growth, evolutionary,
and adaptive methods. In this study, the optimal
number of neurons was determined by traversing over
a range from 1 to 30. In the prediction experiments
in the study, the method was used to establish the
optimization model. This approach was used because
of the fast convergence characteristics of the ELM
model.

(2) The excitation function.

Differing excitation functions provide varying

predictive performance, based on the type of experi-

mental data. In this study, experiments were con-
ducted by selecting different numbers of hidden layer
neurons for each tested excitation function. The opti-
mal function and the ideal number of hidden layer
neurons were selected based on the prediction results
produced by each test. A list of excitation functions
used in this study is provided in Tab.1. A flowchart

for this proposed technique is shown in Fig.1.

Tab.1 Various excitation functions

Function name Functional expression

/ 2 -
Bent f(x):Lll_Ht
2
0 x<0
PReLU =1
¢ S {oor, x=0
SoftPlus f(x) =1In(1+e")
ELU fla)= {0, x<0
= ale’=1), x=0
. sm(x)’ 520
Sinc flx)= x
1, x#0
Gaussian f(x)= e
Tanh f(x)=2Sigmoid (2x) -1
1, <0
Hardlim f(x)={0, x=0
1, x>0
Sine f(x)=sin(x)
Sigmoid fry=
x)=
igmoi o

Acquisition of ionospheric TEC time series

Selection of TEC experimental data in
the ionosphere

Improved ELM mode

i I Empirical mode decomposition method |

Preprocessing of ionospheric TEC time
series decomposition

Clustering preprocessing of
ionospheric TEC time series

T [
¥ [

Research on ELM model |

Prediction of TEC time series
combination model in the ionosphere

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 | :
1 ~ . .
i ¢ | Research on fuzzy clustering algorithms | !
1

1
| i
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

<—| Accuracy analysis of composite model

Accuracy eveluation of ionospheric TEC time series prediction model

Fig.1 A flowchart of the improved Extreme Learning Machine (ELM) model
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2.4 Study data

The proposed ELM algorithm was compared with the
Auto Regressive (AR), Non-linear Auto-Regressive
(NAR), and first-order single variable grey (GM(1,
1)) models, which were applied to the same experi-
mental data from the Centre for Orbit Determination
in Europe (CODE). Prediction accuracy was evalu-
ated using the metrics discussed previously and a se-

ries of experiments were conducted using nine sets of

TEC data involving varying latitude conditions. Model
performance was also assessed for different training
data quantities using three groups consisting of 10-
doys, 5-doys, and 20-doys data used to backward-
predict 1-doy conditions. For example, take 10 doys
as training data and predict 1 doy backward. In order
to use 101—110 doys as training data and 111 doy as

predicting data. Information relevant to each experi-

mental group is provided in Tab.2.

Tab.2 Study data and experimental conditions

Grid point information Year Latitude Training data/doy

Experiment 1 2008 (125°W, 87.5°N) 51—60

Experimental group 1 Experiment 2 2011 (125°W, 45°N) 101—110
Experiment 3 2014 (125°W, 22.5°N) 201—210
Experiment 4 2007 (125°W, 22.5°S) 3135

Experimental group 2 Experiment 5 2009 (125°W, 45°S) 151—155
Experiment 6 2006 (125°W, 87.5°S) 351—355
Experiment 7 2017 (15°E, 45°N) 21—40

Experimental group 3 Experiment 8 2017 (65°E, 45°N) 21—40
Experiment 9 2017 (125°E, 22.5°S) 21—40

2.5 Evaluation of accuracy

A series of metrics were used to evaluate the predic-
tion accuracy of the improved ELM model and dem-
onstrate its superior performance compared to con-
techniques. These included the
Relative Error (MRE), Mean Square Error (MSE),
Root Mean Square Error (RMSE) , and Mean Absolute
Error (MAE) , respectively defined as follows

ventional Mean

n 5
2 ‘xn X,

i=1

MAE = (7)

" 1:1’2’...,,1
n

In these expressions, x, is the predicted result,

x, is the actual CODE data, and n is the number of

data samples.

3 Results and Analysis

1 & lx, —x, The prediction accuracy of the proposed ELM model
MRE = — i=1,2,---,n (4 . . .
n ; x ’ 2,mnan (4) was compared with conventional forecasting models
i A under different experimental conditions. Results
X, — X . . -
et (%, =) ) using various data groups are shown in Fig.2 and
MSE = ———, i=1,2,---,n (5) ) ) )
n Tab.3, with results from nine experiments for
Lo -, different models shown in Tab.4.
Z (x". - xll
i=1 .
RMSE = , 1=1,2,---,n(6)
n
Tab.3 Accuracy results for the improved ELM model
Experiment RMSE/TECU MRE/ (%) MAE/TECU MSE/TECU Excitation function The number of hidden layers
1 0.566 14.0 0.435 0.320 ELU 21
2 1.408 7.4 1.071 1.983 Sig 10
3 1.198 3.3 0.875 1.434 Bent 7
4 5.992 15.4 3.598 35.905 ELU
5 1.023 13.2 0.868 1.046 SoftPlus 21
6 0.645 8 0.56 0.416 Gaussian
7 0.429 3.7 0.299 0.184 ELU 5
8 0.588 6.2 0.487 0.346 Bent 21
9 0.639 4.9 0.55 0.409 Tanh 23
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B ] model with an MRE of 8.5% and an RMSE of 1.39
—
20 TECU.
5 As shown in Tab.3, the accuracy evaluation in-
O 15 . .
& dexes of Experiment 2 and Experiment 4 were re-
210 [=—xaxr duced. Observing the two groups of experimental
= —— AR
5 GM(1,1) data, it can be seen that there are abnormal TEC
—— ELM
T RTELM data in the two groups of data. Considering the ab-
0 o . .
0 5 P p " 10 1 normal situation of TEC data, this may be the main
Epoch reason for the lower accuracy evaluation index of
(a) Results from a study site located at 125° W and 45° N T :
(Datacollected from 101—110 doys of 2011 were included prediction model. Although the accuracy evaluation
in the training set. Forecasted 111 doy (see Experiment 2)) index decreased in Experiment 2 and Experiment 4,
1 "[——Nar the proposed model showed high accuracy evaluation
10 GM(1,1) index in other groups of experiments. Summarizin
group p g
—+— ELM /—1
- 9 —+— EFELM the experimental data of all groups, it can be seen
O —— Raw data . .
= 8 that the accuracy evaluation index of the proposed
87 ELM prediction model performed at a good level. It
F
6 is a positive phenomenon, which proves the superi-
5 - ority of proposed TEC prediction model. Limited by
4 ‘ the length of the paper, we only select 9 grid points
0 2 4 6 8 10 12

Epoch

(b) Results from a study site located at 125° W and 45° S
(Data collected from 151—155 doys 0£ 2009 were included
in the training set. Forecasted 156 doy (see Experiment 5))

16

—— NAR
—*— AR
14 GM(1,1)]
—— ELM
5 12 —»— EFELM
—— Raw data
Q
m 10 1
g
O 8
m
—~
6
4
2
0 5 10 15 20 25

Epoch

(c) Results from a study site located at 65°E and 45°N
(Data collected from 21—40 doys 0of 2017 were included
in the training set. Forecasted 41 doy (see Experiment 8))

Fig.2 Predict results

Fig. 2 demonstrates that the improved ELM
model is closer to the original data than other
models. The NAR model produced an MRE of
32.2% and an RMSE of 3.97 TECU. The AR model
produced an MRE of 26.7% and an RMSE of 3.49
TECU. GM(1,1) produced an MRE of 40.9% and
an RMSE of 5.02 TECU. The ELM model produced
an MRE of 17.1% and an RMSE of 2.33 TECU. The
best performance was achieved by the improved ELM

in the world as experimental data to evaluate the ac-
curacy of TEC data prediction model. In order to fur-
ther verify the accuracy of our proposed prediction
model, we will promote the proposed prediction
model globally in future research and further
evaluate the prediction ability of our proposed model.

The short-term TEC prediction of ionosphere
based on ARIMA model in Literature [ 7] achieved
MRE = 14% ~ 17%. An improved TEC forecast of
short-term ionosphere based on wavelet-ARIMA in
Literature [ 13 ] achieved MRE = 10% ~ 15%. As a
comparison, it can be found that the improved algo-
rithm proposed in Literature [ 13] performed better
accuracy evaluation index than the original ARIMA
algorithm in Literature [ 7]. Moreover, the proposed
algorithm performed higher accuracy evaluation index
than that in Literature [ 7] and traditional ELM
model (RMSE =2.33 TECU, MRE=17.1%). Com-
pared with the experimental results, the proposed
preprocessing algorithm may improve the prediction
ability of the model for TEC data more than the orig-
inal algorithm. Although the characteristics of TEC
data are low regularity and high uncertainty, EMD
combined with FCM

increase the model’ s understanding of TEC data and

algorithm algorithm  may
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improve the prediction accuracy of the model. The
experimental results also show that the preprocessing
may be used as a new way to improve the prediction
accuracy of TEC data prediction model.

These results indicate the improved ELM algo-
rithm to be the most accurate as it is able to adjust
parameters for differing types of ionospheric TEC
data. As a result, the model can be applied broadly
and yet maintain high prediction accuracy. This also
suggests that if a group of experimental data results
in low accuracy, it will affect the prediction metrics
of the model. However, the proposed ELM algorithm
offers stable performance and can maintain high pre-
diction accuracy across experiments and data types.
Experimental results also showed that the addition of
decomposition clustering during pre-processing im-
proved the model’ s ability to effectively utilize train-
ing samples and further improved its forecasting ca-

pabilities (Tab.4).

Tab.4 Average accuracy results for different models

RMSE MRE MAE MSE

Model name

/TECU /(%) /TECU /TECU

NAR 3.97 32.2 3.38 40.15

AR 3.49 26.7 2.93 22.51
GM(1,1) 5.02 40.9 4.35 38.62

ELM 2.33 17.1 1.77 8.73

Improved ELM 1.39 8.5 0.97 4.67

4 Discussion

4.1 Prediction experiments at different latitudes

Experiments were conducted using data from high
(87.5°), mid (45°), and low (22.5°) latitudes,

as shown in Tab.5.

Tab.5 Improved ELM results at various latitudes

. RMSE MRE MAE MSE
Sample latitude

/TECU /(%) /TECU /TECU
High 0.61 11.0 0.50 0.37
Mid 0.86 7.6 0.68 0.89
Low 2.61 7.9 1.67 12.58

The consistency of these metrics demonstrates
the accuracy of the improved ELM model in different
regions. The MRE in Tab.5 reached 11.0%, 7.6%,
and 7.9% for high, mid, and low latitudes, respec-

tively. The improved ELM model also exhibited the
smallest error at high latitudes among the algorithms
tested. Actual TEC values showed variations ranging
from 10 TECU (high lat.) to 40 TECU (low lat.) in
different sampling areas. By comparing the experi-
mental data and error metrics, it is evident that
MRE values were lower at low latitudes while other
error metrics were lower at high latitudes. The pro-
posed ELM model generally performed better in mid-
latitude regions.

By comparing the changes of the experimental
data, we can find that the data changes are not obvi-
ous in the mid-latitude. Moreover, compared with
the high latitude and low latitude, the data changes
in the middle latitudes have more obvious regularity
than high latitude and low latitude, which can be
more easily found by the prediction model, so the
model performed better applicability and can obtain
the evaluation index showing higher prediction accu-
racy. And, the research adds a preprocessing
method before the prediction model, so that the
model has higher adaptability to the research data
than the direct processing data.

4.2 Prediction experiment with training samples
of different lengths
Experiments were conducted using training samples

of different lengths, as shown in Tab.6.

Tab.6 Prediction results with training samples of differ-

ent lengths

Length RMSE MRE MAE MSE

/doys /TECU /(%) /TECU /TECU
5 2.55 12.2 1.68 12.46
10 1.06 8.2 0.79 1.25
20 0.55 4.9 0.45 0.31

Experiments utilizing training samples of varying
lengths were conducted to study its influence on
ELM accuracy. The MRE values for training sample
lengths of 5, 10, and 20 doys were 12.2%, 8.2%,
and 4.9%, respectively. An analysis of other error
metrics indicated that prediction accuracy for the im-
proved ELM model increased gradually with the
number of training samples, with 20-doys data provi-

ding the best results. As such, the accuracy of the
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proposed model could be further improved by in-
creasing the number of training samples.

The training data length of 20 doys performed
better. A possible reason is that the proposed model
with training data more fully adapts to the research
data than 5 and 10 doys. If there are special
situations such as the magnetic storm in the training
length, it will seriously affect the applicability of the
model, while the 20-doys training length reduces the
impact of special situations such as the magnetic
storm on the model and made the adaptability of the
model perform better than 5 and 10 doys. Therefore,
the 20-doys training data length shows the optimal
prediction accuracy in the experiment. However, the
longer the training data will not produce better pre-
diction accuracy, and we will focus on the optimal

training data length in the future research.
5 Conclusion and Prospect

An improved ELM model based on empirical mode
decomposition and a fuzzy C-means algorithm was
presented in this study, to increase prediction accu-
racy for ionospheric TEC data. The proposed model
decomposed experimental data and acquired different
IMF data groups. A fuzzy C-means algorithm was
then utilized to complete the clustering of IMF data,
which were input to the ELM model. A series of ex-
periments were conducted to evaluate prediction per-
formance , from which the following conclusions were
drawn .

(1) MRE and RMSE for the improved ELM
model were 8.5% and 1.39 TECU, respectively. The
improved ELM algorithm ( RMSE=1.39 and MRE =
8.5%) exhibited higher prediction accuracy than the
ELM algorithm (RMSE=2.33 and MRE=17.1%).

(2) Multiple experimental groups were used to
study the applicability of the proposed model at dif-
ferent latitudes. Results from varying sample regions
showed that the improved ELM model had a high
prediction accuracy for mid-latitude data, with an
MRE of 7.6%.

(3) The effect of training data length on model
performance was also investigated. It was observed

that prediction accuracy improved as the length of

training data increased. The best performance was
achieved when 20-doys data were used to predict 1-
doy ahead, exhibiting an MRE of 4.9%.

The proposed model offers several advantages
over conventional algorithms such as NAR. Improved
forecasting performance allows the model to be ex-
tended to global ionospheric grid prediction research.
In the follow-up study, we will explore the impact of

magnetic storms on TEC data model.
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