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Abstract: If geodetic coordinates from an ellipsoid are included in the equations of a projection for mapping a sphere instead of
geographical coordinates, the result will be a projection of the ellipsoid into a plane. This will slightly change the distortion distribution
of the initial map projection. The question is to what extent the replacement of geographical with geodetic coordinates will affect this
change. In this paper, we deal with conformal, equal-area and equidistant projections of the sphere, which we modify by using geodetic
coordinates instead of geographical ones. The result will be an approximately conformal, approximately equal-area and approximately
equidistant projection. It is shown that in this case the maximum distortion of the angles in approximately conformal projections will be

approximately 23.09", the maximum distortion of the area in approximately equal-area projections less than 0.7% and the maximum

distortion of lengths in approximately equidistant projections less than 0.7% , therefore on the maps imperceptible.
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1 Introduction

A map is a projection of data usually from the real
Earth, celestial body or imagined world to a plane rep-
resentation on a piece of paper or on a digital display
such as a computer monitor. Usually, maps are created
by transforming data from the real world to a spherical
or ellipsoidal surface (the generating globe) and then
to a plane. The characteristics of this generating globe
are that angles, distances or surfaces measured on it are
proportional to those measured on the real Earth''?'.
The transformation from the curved surface into a plane
is known as map projection and can take a variety of
forms, all of which involve distortion of areas, angles,
and/or distances. Since no map projection maintains the

correct scale throughout, it is important to determine the
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extent to which it varies on a map. On a world map,
qualitative distortion is evident to an eye familiar with
maps, after noting the extent to which landmasses are
improperly sized or out of shape, and the extent to
which meridians and parallels do not intersect at right
angles or are not spaced uniformly along a given merid-
ian or given parallel. On maps of countries or even of
continents, distortion may not be evident to the eye,
but it becomes apparent upon careful measurement and
analysis" !

All map projections involve distortion of areas,
angles, and/or distances. The types of distortion can
be controlled to preserve specific characteristics, but
map projections must distort other characteristics of the
represented object. The main problem in cartography is

that it is not possible to map a spherical or ellipsoidal
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surface into a plane without distortions. FEuler first
proved as early as 1772 that a sphere cannot be
mapped into a plane with zero-distortion'*”’

Beginning in the late 1950s, a learned journal
Acta Geodaetica et Cartographica Sinica, published by
the Chinese Society of Surveying and Mapping started
to carry papers on the subject of map projections. The
other journals, such as the Bulletin of Surveying and
Mapping and Translations of Surveying and Mapping,
often published papers about map projections. To meet
the requirements of teaching and production, many ed-
ucational materials were edited and published by
Chinese colleges and universities of surveying and map-
ping. More of the advancement in map projection study
in China one can learn from the book by Qihe Yang,
John P. Snyder and Waldo R. Tobler'®.

In the cartographic literature, map projections are
divided by types of distortion into conformal, equidistant
(in a certain direction) , equal-area and compromise pro-
jections'”". In the Russian cartographic literature, pro-
jections with small distortion of angles and projections
with small distortion of area have also been added.
These are projections in which angle distortions or area
distortions are not noticeable to the naked eye'"’. What
distortions of lengths, shapes and area are not noticeable

" announced on the basis of his

on the maps, Ginzburg'"
experimental research. He came across this information ;

(1) With winding lines such as rivers, coastlines
and boundaries, differences in length of up to 5% can-
not be observed. Only differences of 10% and higher
are easy to spot.

(2) When the boundary of an area is a curved
line, differences of only 5% become noticeable. Differ-
ences of 10% ~15% are easily noticeable.

(3) Shape distortions occur already at deforma-
tions of angles of 2°~3°. Distortion of angles of 4°~5°
causes easily noticeable distortion of the shape.

The need for approximately conformal and approx-

imately equal-area projections was explained in the
Russian cartographic literature of the 1950s by these
arguments. Since general geographical atlases and most
of the various hand maps are intended for a wide range
of users, most of whom do not know the methodology of
measurement on maps, the visual interpretation of car-
tographic content is much more important. Therefore, it
is necessary for the cartographer to know the possibilities
of visual interpretation to be able to use them in making

the mathematical basis of maps'"’.

2) Wwhen choosing map

Bugayevskiy and Snyder!
projection divide all maps into technical and general,
and accordingly distinguish the method of perception
and evaluation of cartographic information. The appli-
cation of the data given in their Appendix 1 enables the
experience of the magnitude of the distortions that can
be neglected, the development of an approximate hier-
archy of requirements for map projections and the un-
derstanding of the nature of the distortions of the pro-
jection and scale. They distinguish the limit values of
distortions whose effect can still be neglected depending
on whether they are scientific-technical and technical
maps or maps for general use.

If it is a question of scientific-technical or technical
maps and analysis of cartographic information mainly-
based on cartography of higher accuracy and with less
use of computers, then distortion of linear scale and
area scale up to £ (0.2% ~0.4%) and angles up to
15 ~30" can be tolerated.

Maps for general use which are used for analyzing
and using cartographic information by rough measure-
ments and estimating the dimensions, shape, relative
position and significance of the area, distortions of
length and area up to = (2% ~3%) and angles up to
2° ~3° are allowed. If cartographic information is deter-
mined and estimated mainly visually, sometimes by
rough measurements, as is the case with wall maps,

some maps in atlases and textbooks, and maps for il-
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lustration in various publications, then distortions of
length and area up to + (6% ~8% ) may be allowed,
and angles up to 6°~8°.

Such distortions cannot be visually observed. If car-
tographic information is observed and assessed only vis-
ually and without measurement, e.g., from wall maps,
school maps or illustrative maps, then distortions of
length and area up to + (10% ~12% ) and angles up to
10°~12° can be tolerated. In doing so, some deforma-
tions will be visible.

Today, when most of the data we use in making
maps is in digital form, or easily digitized into digital
form, the application of approximately conformal and
approximately equal-area projections is even more justi-
fied. For example, a map in equal-area projection is
not necessary to determine areas. The area can also be
determined according to the data obtained from the
maps in conformal projections if the distortions of the
projection are considered. In this way, as early as
1993, the area of the Croatian sea and islands was de-
termined from the map at a scale of 1 : 1000000 in the
Gauss-Kriiger, i.e., conformal, projection'™’. Using this
methodology, which was elaborated in several other arti-

4161 " Jetermined the lengths of coastlines and areas

cles!
of Croatian islands from a topographic map at a scale of
1 : 25000 produced in the Gauss-Kriiger projection.

Another possibility of determining lengths and
areas is to calculate the geodetic coordinates on the el-
lipsoid from the coordinates in a map projection and to
calculate the lengths and areas on the ellipsoid.

And what should be especially emphasized, today
many online cartographic services, such as Google
Maps and virtual globes such as Google Earth, contain
options for measuring the lengths and areas free from

the effects of projection distortion' "

2 Double Mapping of an Ellipsoid into
Plane

An ellipsoid can be mapped to a plane in two ways:

@D directly, i. e., express the coordinates of an
arbitrary point in the plane directly using geodetic coor-
dinates, or @ first map the ellipsoid to a sphere and
then map that sphere to the plane. The second
approach is called the double mapping. The meaning of
this second approach is important for cartography, be-
cause only in this way it is possible to calculate oblique
map projections of an ellipsoid using the transition to
normal one by spherical trigonometry and at the same
time consider the Earth’s flatness'™® . Formulas that con-
nect the equations of normal, transverse, and oblique
projections are given by Lapaine and Francula'’.

For example, if an ellipsoid is conformally mapped

120211 and then that sphere is conformally

to a sphere
mapped to the plane using one of the conformal projec-
tions in the oblique aspect, the corresponding conformal
projection of the ellipsoid is obtained-stereographic ob-
lique,, Mercator oblique, etc. The same is true for equal-
area mapping, i.e., if the mapping of an ellipsoid to a

"2 and mapping a sphere into a plane

sphere is equal-area
is equal-area, then the composition of these mappings is
equal-area to mapping the ellipsoid into a plane.

As for the property of equidistance, the analogous
assertion is generally not true. Only in the case when
the main directions, along which the main scale is
equal to one, were the same during equidistant
mapping of the ellipsoid onto the sphere and the equi-
distant mapping of the sphere onto the plane, it is pos-
sible to conclude that the equidistant projection of the
ellipsoid into the plane will result'™'.

The process that Google used in 2005 to create the
mathematical basis for its online mapping service Google
Maps can be interpreted as the double mapping of an
ellipsoid into a plane'*’. However, the ellipsoid is not

mapped to the sphere either conformally'***"

[22]

or equal-
areat'™ or equidistant'™ | but provided that the geo-
graphical coordinates on the sphere are equal to the ge-

odetic coordinates on the ellipsoid. In this paper it is
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described by Eq. (2). The sphere is then mapped into
a plane according to the formulas of the normal confor-
mal cylindrical projection, i.e., Mercator projection.
For the radius of the sphere, the large semiaxis of the
ellipsoid WGS84 was taken. WGS84 is widely used
today all over the world. In this paper it is described by
Eq. (1). Since the ellipsoid is not conformally mapped
to the sphere, the resulting projection is not a conformal
mapping of the ellipsoid into a plane, but approximately
conformally. The newly obtained projection is known as
the web-Mercator projection.

It is important to emphasize once again that the
mapping of the ellipsoid into the plane as applied by
Google, in practice is achieved by including geodetic
coordinates from the ellipsoid in the formulas for the
mapping sphere, so there was no additional calculation.
The main reason for Google’s application of such a
procedure is simpler formulas for mapping a sphere and
therefore faster calculations than direct formulas for
mapping ellipsoid .

2.1 Scales of mapping of an ellipsoid to a sphere
by normals

To calculate the distortions in an approximately confor-

mal projection, it is necessary to have formulas for the

factors of the local linear scale in the direction of the

meridians and parallels when mapping the ellipsoid to

the sphere and then the sphere to the plane.

We will call the latitude and longitude related to
the rotating ellipsoid geodetic coordinates and denote ¢,
A. We will call the latitude and longitude related to the
sphere by geographical coordinates and denote @', A’

Let a rotating ellipsoid with semiaxes @ and b be
mapped to a sphere of radius R so that

R=a (1)
¢'=¢, A=A (2)

The mapping of an ellipsoid to a sphere (Fig.1)

given by Eq. (2) is known in the literature as mapping

by normals'"®’.

Fig.1  Mapping an ellipsoid to a sphere by normals
(Point T" is the image of point T)

Factors of local linear scales by meridians h, and by

parallels %, of mapping given by Eqs. (1) and (2) are

hl:quD':i:«/(l—e2 sin“g)”’ (3)
Mng M ]—ez
Rcos ¢'dA"  a s
ki=—————=—=1- 4
" Neosgdd N ¢ sme (4)
a(1-¢)

the radius of curvature

where, M=

b

of the meridian; N= , the radius of cur-

a
V1-e” sin’@

. : [ :
vature of the first vertical; and e= [1-—, the first
a

numerical eccentricity of the ellipse.
Local area scale factor is

( 1-¢® sin’p)”’

- 1-¢

The maximum distortions of the angles w, are cal-

P =hk, (5)

culated

. 0 b=k, |
sin —= =
2 hytk, o 2(1-€%)+e’ cos’e
Values of b, k,, p, and , with > =0.006 694 38

are represented in Tab.1.

2 2
e cos @

(6)

From Tab.1 when mapping the ellipsoid to the
sphere by normals, the distortions of the lengths are not
more than 0.7% , the distortions of the area are also not
more than 0.7% and the distortions of the angles are
not more than 23.09’. These are invisible sizes to the

naked eye.
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Tab.1 Factors of local linear scale in the direction of me-
ridian h,, in the direction of parallel k,, factor of
local area scale p, and maximum distortion of angle
w, as a function of geodetic latitude ¢, according to
Eq. (3)—Eq. (6) with ¢*=0.006 694 38

®/(°) hy ky P /(")
0 1.006 739 1 1.006 739 23.090 92
10 1.006 435 0.999 899 1.006 333 22.396 91
20 1.005 557 0.999 608 1.005 163 20.397 80
30 1.004 213 0.999 163 1.003 373 17.33273
40 1.002 565 0.998 616 1.001 178 13.569 12
50 1.000 813 0.998 034 0.998 845 9.5594 35
60 0.999 167 0.997 486 0.996 656 5.7872 96
70 0.997 826 0.997 040 0.994 872 2.7091 53
80 0.996 951 0.996 748 0.993 709 0.6985 50
85 0.996 724 0.996 673 0.993 407 0.1759 88
90 0.996 647 0.996 647 0.993 306 0
hy

1.008

1.006

1.004

1.002

1
0.998
0.996

0 10 20 30 40 50 60 70 80 90
Fig.2 Factor of local linear scale in the direction of meridian h,

as a function of geodetic latitude ¢, according to Eq. (3)

ki
1.0005

1
0.9995
0.999
0.9985
0.998
0.9975
0.997
0.9965
0.996

0 10 20 30 40 50 60 70 80 90

Fig.3  Factor of local linear scale in the direction of meridian &,

as a function of geodetic latitude ¢, according to Eq. (4)

3 Approximately Conformal, Equal-Area
and Equidistant Projections of an Ellip-
soid onto a Plane

If geodetic coordinates from an ellipsoid are substituted

in the equations of a map projection for mapping a

sphere, the result will be a projection of the ellipsoid
into a plane. Regardless of the projection of the sphere
in this mapping composition, the factors of local scales
of lengths and areas of such double mapping are ob-
tained by multiplying the corresponding factors of local
scales of lengths and areas of projection of the sphere
by h,, k, and p, according to Eqs. (3), (4) and (5).

P
1.008
1.006
1.004
1.002

1

0.998

0.996

0.994

0.992
0 10 20 30 40 50 60 70 80 90

Fig.4 Factor of local area scale p, as a function of geodetic lat-

itude ¢, according to Eq. (5)

,

25
20
15
10

5

0
0 10 20 30 40 50 60 70 80 90

Fig.5 Maximum distortion of angle @, in minutes as a func-

tion of geodetic latitude ¢, according to Eq. (6)

3.1 Approximately conformal projections of the
ellipsoid into the plane
If geodetic coordinates from an ellipsoid are included in
the equations of the conformal projection for mapping a
sphere, the result will be an approximately conformal
projection of the ellipsoid into the plane. Regardless of
the conformal projection of the sphere in that mapping
composition, the maximum distortion of the angle of
such a double mapping is expressed by Eq. (6). Tab.1
gives the values of the maximum distortions of the angle
w=w, with ¢*=0.006 694 38. Fig.5 shows these values
as a function of geodetic latitude ¢. Eq. (6) can be
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written in the form

. W 1
smf:l—ﬁ (7)
2 e” cos @
WYTIEIY
2(1-e")

whence we see that we will obtain the extreme values
(maximum and minimum) of the function w = w, for
¢=0° and ¢=90°.

wl(oo):wlmax: wl(900>:wlmin:0 <8)

29
-e

From Tab.1 we can see that the maximum distortion
of the angles in the approximately conformal cylindrical
projection will be 23.09" and therefore the distortions of
the shape on the map made in such a projection will be
imperceptible. However, this does not mean that we do
not have to take care of other distortions. E.g., if geo-
detic coordinates are substituted in the equations of the
conformal cylindrical projection for mapping the
sphere, the result will be an approximately conformal
cylindrical projection of the ellipsoid in the plane. Let
us look at it in more detail.

Basic cartographic equations and expressions for
scales and distortions in a normal aspect conformal cy-

lindrical projection of a sphere are"**’

x= Reos ¢()(A_A()) , yZRCOS QOIH(tan(Z‘szj (9)

T o
where, ¢ e {—2;2} A e [-w,w] ; constants R>0;

@, € [—;,;}; and A, e [-m,m].

We can calculate

2
cos @,

j , ,=0 (10)

cos @,

h,=k,=

9’
cos @

P2 =hyk, Z(

cos @
In these equations h, is the factor of local linear
scale along meridians; k, factor of local linear scale
along parallels; p, factor of local area scale; w, maxi-
mum angle distortion; and ¢, given latitude.
If we first map the ellipsoid onto a sphere according

to Eqs. (1) and (2), and then the sphere onto the

plane by applying Eq. (9), we will obtain an approxi-

mately conformal cylindrical projection

x= Rcos ¢,(A=A,) , y=Rcos ¢0(Z+§j (11)
1=¢? sine)? cos @
R o
1-e cos @

(12)

cos @,

k=kk,=+/1-¢" sin’p
cos @

(1-e’sin’p) *(cos @, :
P=pPiP2= 1o

cos @ (13)

2 2
' e cos

2(1-¢”) +e* cos’o

w=w,=2sin

where, all distortions of an approximately conformal
cylindrical projection can be determined.

3.2 Approximately equal-area projections of the

ellipsoid into the plane

If geodetic coordinates from an ellipsoid are substituted
in the equations of equal-area projection for mapping a
sphere, the result will be an approximately equal-area
projection of the ellipsoid into the plane. Regardless of
the equal-area projection of the sphere in that mapping
composition, the area scale of such a double mapping
is expressed by Eq. (5).

Tab.1 shows the values of the local factor of the
area scale p=p, with > =0.006 694 38. Fig.4 shows the
local area scale factor p=p, as a function of geodetic
latitude ¢.

The extreme values (maximum and minimum) of the

function p=p, will be obtained for ¢ =0° and ¢ =90°.

. 1 e’
p1<0 >:w1max: 2:1+ 2
1-e 1-e
5 (14)
e
pl(900>:plmin:1_62=1_ 2
1-e
For ¢*=0.006 694 38 we get
2
5=0.006 719 (15)

1-e
Therefore, if geodetic coordinates are included in

the sphere mapping formulas in any equal-area projec-
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tion, approximately equal-area projections of the ellip-
soid will be obtained. Area distortions will be less than
0.7% , and therefore imperceptible on the maps. How-
ever, this does not mean that we do not have to take
care of other distortions. The distribution of all distor-
tions should be determined in an analogous way to that
shown in the section on approximately conformal pro-
jections.

3.3 Approximately equidistant projections of the

ellipsoid into the plane

If geodetic coordinates from an ellipsoid are substituted
in the equations of the equidistant projection for mapping
a sphere, the result will be an approximately equidistant
projection of the ellipsoid into the plane. In the case of
conic and azimuthal projections, a distinction should be
made between equidistance along meridians and equi-
distance along parallels. Tab.1 shows the values of the

local linear scale factor in the meridian direction h=h,

and in the parallel direction k=Fk, with e’ =0.006 694 38
for mapping the ellipsoid to the sphere according to the
normals. Figs.2 and 3 show the local scale factors h=h,
and k£ =k, as a function of geodetic latitude ¢. The
extreme values ( maximum and minimum) of the func-
tions h=h, and k=Fk, will be obtained for ¢ =0° and
¢=90°

1
B (0°)= by =15 =1.006 7;
-e

h,(90°)=h, . =+/1-¢" =0.996 6;
ky(0°) =k, =15

Imax

and £,(90°)=Fk,, . =+/1-e* =0.996 6.

The local linear scale factor differs by less than

Imin

0.7% from the unit in the equidistant line direction.
This means that when choosing an approximately equi-
distant projection of an ellipsoid, the criteria that apply
to equidistant projections of a sphere can be used.
However, here, as with all other map projections, we

must take care of other distortions.

4 Conclusion

A map is a result of mapping data usually from the
Earth, celestial body or imagined world to a plane rep-
resentation on a piece of paper or on a digital display
such as a computer monitor. Usually, maps are created
by transforming data to a spherical or ellipsoidal surface
and then to a plane. The mapping from a curved surface
into a plane is known as map projection and can take a
variety of forms.

Since no map projection maintains the correct
scale throughout, it is important to determine the extent
to which it varies on a map. On a world map,
qualitative distortion is evident to an eye familiar with
maps, after noting the extent to which landmasses are
improperly sized or out of shape, and the extent to
which meridians and parallels do not intersect at right
angles or are not spaced uniformly along a given merid-
ian or given parallel. On maps of countries or even of
continents, distortion may not be evident to the eye,
but it becomes apparent upon careful measurement and
analysis.

There are no map projections that can maintain a per-
fect scale throughout the entire projected area because
they are taking a sphere or ellipsoid and forcing it onto
a flat surface. There are four main types of distortion
that come from map projections: distance, direction,
shape and area. That is why when applying any map
projection, we must take care of all the distortions.

If geodetic coordinates from an ellipsoid are in-
cluded in the equations of conformal, equivalent, or
equidistant projections for mapping a sphere instead of
geographical coordinates, the result will be approxi-
mately conformal, approximately equal-area or approxi-
mately equidistant projection of the ellipsoid into the
plane. Equidistance along meridians and equidistance
along parallels need to be distinguished for conic and

azimuthal projections. The question was to what extent
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the replacement of geographical with geodetic coordinates

will affect this change. The paper shows that the maxi-

mum distortions of the

angles in approximately

conformal projections will be approximately 23.09", the

maximum area distortion in approximately equal-area

projections less than 0.7% and the maximum distortions

of lengths in approximately equidistant projections less

than 0.7% to that on the maps imperceptible.
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