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Abstract: Remote sensing provides key inputs to a wide range of models and methods developed for quantifying forest carbon. In
particular, carbon inventory methods recommended by IPCC require biomass data and a suite of forest disturbance products.
Significant progress has been made in deriving these products by leveraging publicly available remote sensing assets, including
observations acquired by the legendary Landsat mission and new systems launched within the past decade, including Sentinel-2,
Sentinel-1, GEDI, and ICESAT-2. With the L-band NISAR and P-band BIOMASS missions to be launched in 2023, the Earth’ s
land surfaces will be imaged by optical and multi-band (including C-, L-, and P-bands) radar systems that can provide global,
sub-weekly observations at sub-hectare spatial resolutions for public use. Fine scale products derived from these observations will
be crucial for developing monitoring, reporting, and verification (MRV') capabilities needed to support carbon trade, REDD+,
and other market-driven tools aimed at achieving climate mitigation goals through forest management at all levels. Following a brief
discussion of the roles of forests in the global carbon cycle and the wide range of models and methods available for evaluating
forest carbon dynamics, this paper provides an overview of recent progress and forthcoming opportunities in using remote sensing
to map forest structure and biomass, detect forest disturbances, determine disturbance attribution, quantify disturbance intensity,
and estimate harvested timber volume. Advances in these research areas require large quantities of well—distributed reference
data to calibrate remote sensing algorithms and to validate the derived products. In addition, two of the forest carbon pools-dead
organic matter and soil carbon—are difficult to monitor using modern remote sensing capabilities. Carefully designed inventory
programs are needed to collect the required reference data as well as the data needed to estimate dead organic matter and soil
carbon.
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1 Introduction

It has been well-established that rapidly-increasing
greenhouse gases in the atmosphere have contributed
to observed global warming since the mid-20th cen-
tury! 12

major goal of the international community since the

! Curbing this increasing trend has been a
United Nations  Framework
Convention on Climate Change (UNFCCC) in 1992.
Following the Paris Agreement signed in 2015 and
the 2021 Conference of the Parties ( COP 26) , more

adoption of the
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than 100 countries/parties have pledged to achieve
carbon neutrality by the second half of the 21st cen-
tury"*. Achieving this ambitious goal will require
both reducing carbon emissions wherever possible
and enhancing carbon sequestration by terrestrial
and aquatic ecosystems.

With the ability to sequester and store carbon
for decades to centuries in biomass or wood
products, the forest provides high potential for
carbon management designed to enhance carbon up-

[4

take by terrestrial ecosystems'*'. In particular, the



Chengquan HUANG et al. ; Remote Sensing and Forest Carbon Monitoring—a Review of Recent Progress, Challenges and Opportunities 125

United Nations Collaborative Program on Reducing
Emissions from Deforestation and Forest Degradation
(REDD+)

framework to help developing countries reduce emis-

in  Developing Countries offers a
sions from deforestation and forest degradation while
achieving sustainable management of forests and the
conservation and enhancement of forest carbon
stocks'>. A transparent and cost-effective measure-
ment, reporting, and verification (MRV) system is
crucial for the successful implementation of REDD+

%71 Such a system should provide methods

projects
for calculating carbon fluxes that may arise from
forest change driven by disturbances, management

These flux

estimates provide a basis for determining carbon

activities, and forest growth **’.
credits, which are critical to carbon trade and to
other tools needed to implement forest-based climate
mitigation initiatives' """

Carbon dynamics are governed by many physical
and biogeochemical processes. In general, remote
sensing is not capable of directly measuring carbon in
most ecosystem pools. Instead, complicated methods
or models are needed to calculate the amount of car-
bon in different pools and the fluxes between those
pools. However, remote sensing is crucial to the der-
ivation of many of the datasets required by a wide
range of carbon estimation methods. A number of
new remote sensing systems launched in the most re-
cent decade, along with their free-access data poli-
cies, have provided opportunities to greatly improve
many data products needed to support forest carbon
monitoring. The unprecedented spatial and temporal
details as well as the wide range of sensing capabili-
ties (optical, radar, and LiDAR) make it possible
to generate products with spatial details, timeliness,
and accuracy that can better support MRV at both
local and regional/national levels for REDD+ or
other projects aimed at achieving climate mitigation
goals through forest management.

The main purpose of this study is to provide a
review of recent progress in using the newly
available, publicly accessible remote sensing assets
to advance forest carbon monitoring. We will provide

an overview of the roles of the forest in the global

carbon cycle, review the methods that are available
for deriving forest carbon estimates, and discuss re-
cent progress in deriving key datasets required by
carbon inventory methods recommended by IPCC
using existing remote sensing assets as well as oppor-

tunities offered by two forthcoming radar missions to

be launched in 2023.
2 Forest and the Global Carbon Cycle

The global carbon cycle includes an active natural
carbon cycle that circulates carbon between the res-
ervoirs of the atmosphere, ocean, and terrestrial bio-
sphere ,and anthropogenic perturbations that occur on

B) - Anthropogenic

top of the natural carbon cycle
perturbations are caused by emissions from fossil fuel
use and land use change, which lead to increased
atmospheric CO, concentration and carbon changes
in both ocean and land. Global carbon research is
mainly concerned with (1) carbon emissions resulting
from fossil fuel combustion and oxidation from other
industrial processes plus land-use change and other
human activities on land, and (2) the partitioning
of emitted carbon between the atmosphere, ocean,
and land. One of its primary goals is to quantify the
size of and fluxes between carbon pools in the atmos-
phere, land, and aquatic systems, and how these
pools change under anthropogenic perturbations''*’
Recent studies show that current estimates of the
global carbon budget are highly uncertain. For the
decade of 2010—2019, for example, emissions from
land use change and carbon uptake by land were es-
timated at 1.6+0.7 GtC y~'( gigaton carbon per year)
and 3.4£0.9 GtC y™' respectively ', For the decade
of 2007—2016, these estimates were 1.3+0.7 GtC y™'
and 3.0+0.8 GtC y' respectively, and the global
budget had an imbalance of 0.6 GtC y™'"'*'. Reducing
uncertainties of carbon budget estimates is crucial for
accurate projections of future concentrations of CO, in
the atmosphere and changes in the Earth’s climate'"”.
The forest plays complicated roles in many
Earth system processes related to climate change,
including surface energy fluxes, hydrological proces-

[18-19]

ses, and the carbon cycle . While accounting for

less than one one-third third of the total land area,
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forestland stores ~45% of terrestrial carbon and con-
tributes ~50% of terrestrial net primary produc-

tion 2"’

. It is estimated that forests absorb approxi-
mately one fourth of anthropogenic CO, emissions
and store over 80% of aboveground carbon, which is
more than any other terrestrial ecosystem''’. There-
fore, relatively minor alterations to carbon storage or
cycling in forest ecosystems could have a substantial
impact on atmospheric carbon dioxide concentrations.
Improved quantification of forest carbon dynamics is
crucial for reducing uncertainties in the global carbon
budget.

Carbon in forestland is typically partitioned into
soil and biomass pools (Fig.1). Live biomass is fur-
ther partitioned into aboveground and belowground
biomass, while dead biomass, which releases carbon
gradually through decay, includes litter, standing

1 Forest carbon

dead, and coarse woody debris'
dynamics are governed in large part by disturbance
and regrowth'”'. Vegetation growth provides a
mechanism for transferring atmospheric carbon to the
forest ecosystem. About half of the Gross Primary
Production ( GPP )—the initial uptake of carbon
through photosynthesis—is used by plants for growth
and maintenance. The remaining carbon contributes to
the Net Primary Production ( NPP). Net Ecosystem
Production ( NEP) is the difference between NPP
and heterotrophic respiration (i.e., CO, emission by
non-photosynthetic organisms ) *'. Over time, some
carbon in live biomass may be removed or lost due to
harvest/logging, fire, storm damage, or insect/
carbon

contributes to the Net Biome Production (NBP).

disease outhreak, and the remaining

NBP is a critical parameter to consider for long-
term carbon storage. It is a small fraction of GPP
and can be positive or negative; at equilibrium it

[23

would be zero'®?’. When trees are harvested, the

harvested carbon can be used as biofuel to reduce
emissions from fossil fuel use, or stored in wood
products where the carbon is released gradually over

[24]

decades or longer Burying the wused wood

products will keep the remaining carbon in those
products from being released into the atmosphere for

even longer' ™.

Harvested wood

CO»

products

Aboveground

biomass

Dead biomass
(e.g., litter,dead
wood)

Belowground

biomass

|_| > Soil

Fig.1 A conceptual diagram of carbon uptake through

vegetation growth ( green arrows ) and carbon
transfer (blue arrows) among major pools of forest
ecosystems. Carbon can be released from each
pool through abrupt (e.g., fire) or gradual (e.g.,
decay) processes. An inventory of forest carbon
dynamics can be derived by summing up carbon

changes in all pools (see Section 3.4)

A major goal of forest carbon management is to
increase carbon sequestration and storage by forests
and related carbon pools (e.g., wood products)
while reducing and/or delaying carbon release from

%27 A suite of forestry-related climate

those pools'
change mitigation strategies has been proposed, inclu-
ding afforestation, reforestation, forest management,
reduced deforestation, harvested wood product manage-
ment, and use of forestry products for bioenergy to re-
place fossil fuel use, among others'? . These strategies
are key elements of major climate initiatives, including
the Kyoto Protocol, REDD+, and the Paris Agree-

ment[s’ 2]

Implementing these strategies requires
robust carbon accounting systems to provide reliable
estimates of carbon credits for carbon trade and to sup-
port the Measurement, Reporting, and Verification

(MRV) of carbon pools and fluxes'* **,
3 Forest Carbon Estimation Approaches

Terrestrial carbon fluxes can be estimated using top-
down models or bottom-up approaches, which have
also been used together to constrain global carbon

[31-33]

estimates Top-down methods are typically
based on the inversion of atmospheric transport
models  constrained by  atmospheric  CO,
measurements. Ocean and land fluxes are estimated

based on the residuals left unexplained by fossil fuel
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emissions, which are assumed to be known'**'. Re-
sults from these models indicated that the terrestrial
ecosystem has been a net carbon sink "', The sink
estimates derived using the top-down approach differ
substantially depending on the transport models

31, 38]

used' Further, because the underlying
transport models used by the top-down approach are
primarily constrained by CO, movement in the at-
mosphere and not by any specific features of
terrestrial ecosystems, it is not possible to attribute
the sink estimates derived using this approach to fine
scale forest or other ecosystems. The rest of this
paper will mainly focus onthe bottom-up approach,
which includes process-based models designed to re-
present ecosystem processes controlling carbon cycle
dynamics, models that use accounting-based methods
to track carbon fluxes arising from land use change,
and methods that use forest inventory data. A combi-
nation of multiple models is often used in synthesis
studies aimed at constraining the boundaries of
carbon estimates for a given region.

3.1 Process-based models

A large number of models have been developed based
on different principles of earth system processes to re-
present carbon transfer among different pools ( Tab.
1). These models can be divided into two categories :

¥ Both model types use

diagnostic and prognostic
external data to provide climate forcing. Diagnostic
models require satellites or other external sources to
prescribe vegetation conditions and disturbance dy-
namics. These models are primarily used to estimate
carbon fluxes under given vegetation conditions and
disturbance history using algorithms of varying com-
plexity. Example diagnostic models include BEPS'™* |
different variants of the CASA model ™™, and
ISAM™.

Instead of requiring vegetation and disturbance
history information prescribed using external data,
prognostic models calculate vegetation dynamics
based on succession and other ecological theories.
They can be used for diagnostic analyses and for pre-
dicting future carbon dynamics under different
climate scenarios.

change and  management

However, because they are much less constrained by

observations than diagnostic models, they may pro-
duce carbon estimates that are more variable ( and

likely less reliable) than diagnostic models. Example

prognostic models include Can-IBIS'*' | CLM-
CN™“' DLEM'", LPJ-wsl"*®*', ORCHIDEE'*’,
SiB3""' | and TEM"".

Tab.1 A partial list of process-based models for carbon

studies (based on Literatures [39] and [52])

Model name Developers/References

BEPS Chen et al.[%] ;Ju et al [ %3]
Biome-BGC Bond-Lamberty et al.'>*
Can-IBIS Foley et al.1) . Kucharik et al.[%
CASA Randerson et al.[+]

CASA GFEDv2 van der Werf et al.[4- 4]
CENTURY Parton et al.[*]
CLM-CASA Randerson et al.l*"]

CLM-CN Thornton et al.'*! ; Randerson et al.>”’
DLEM Tian et al.[*"]
DNDC Li et al.[%
ED Hurit et al.’®); Moorcroft et al.[®]
EDCM Liu et al.[®!]
FIRE-BGC Keane et al.[%?]
FORCLIM Bugmann %!
FOREST-BGC Running and Gower %
FVS Dixon®]
HYBRID Friend et al. ]
InTEC Chen et al.l?"]
ISAM Jain and Yang!*/
LANDIS Mladenoff"®’

LINKAGES Pastor and Post!®
LPJ-wsl Sitch et al.[*®) ; Bondeau et al.[”"]
ORCHIDEE Krinner et al.l*]
SiB3 Baker et al.[%]
SORTIE Pacala et al.”"
TEM Raich et al.’®"' ; McGuire et al.!”!

Depending on the modeling structures used,
process-based models can also be grouped as com-
partment models or ecosystem demography models' ™.
In compartment models, the carbon pools of a stand
are typically organized by leaves, branches, stems,
roots, and other biomass compartments. Most of
these models can simulate forest growth and recovery
under the influence of climate and atmospheric ( CO,
and nitrogen) changes,as well as the interaction be-
tween growth variation and heterotrophic respiration
variation, although they do not necessarily represent
tree diameter, height, density, or other structural

variables explicitly. Therefore, they are especially
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valuable for understanding how forest carbon
processes are affected by climate change'”™'. The
generalized approach to understanding ecosystem
carbon dynamics provided by these models has been
examined extensively. They have been used in many
studies to simulate biogeochemical processes of
forests associated with disturbance'””®’

Ecosystem demography models, also known as
gap models, are built upon the notion that a forest
stand is a composite of many horizontally homogeneous
patches that have different species compositions,
ages, and/or successional stages'””'. This modeling
strategy provides a mechanism to represent the
impact of disturbances on forest composition and
structure,, making it possible to simulate the estab-
lishment, growth, and mortality of mixed-species

[74

and mixed-age forests' ™ 7*' . Example gap models in-

clude SORTIE'™" | FIRE-BGC'® , LINKAGES'®! |
FORCLIM'®' | HYBRID'® LANDIS!® | FVS!®!

and ED'®’ These models can simulate the impacts

b

of management practices, disturbances, and climate

of forest
[79-80]

change on the long-term dynamics
structure,, biomass, and species composition
3.2 Accounting-based methods

Accounting provides an alternative approach to tracking
carbon fluxes arising from land use change'®®'. One
of the most widely used accounting-based methods is
a bookkeeping model developed by Houghton'**'.
This model keeps track of carbon in four major
pools: live aboveground and belowground biomass;
dead biomass, including coarse woody debris; har-
vested wood products; and soil organic carbon. It
calculates carbon changes arising from four change
types related to forestland, including forest disturb-
ance by fire, industrial wood harvest, conversion
from forest to cropland, and conversion from forest to
urban land"*''. Tt has been used to derive carbon es-
timates from historical land use change across the

21, 84-85

globe! I"and for many countries and regions,

including the US| China'¥', and the Brazilian

[88]

Amazon Together with remote sensing-based

forest change and biomass products, bookkeeping
models have been used to estimate carbon fluxes due

to deforestation in recent decades'®'.

Largely following the bookkeeping approach of
the Houghton Bookkeeping model, Hansis et al. de-
veloped the Bookkeeping for Land Use Emission
(BLUE) model*’.

Bookkeeping model,, however, BLUE is spatially ex-

Unlike the original Houghton

plicit—it runs on a grid of half-degree cells, and
can track the carbon fluxes caused by each year’s
events through time. Other forms of accounting-based
models have also been developed and/or used to pro-
historical land  use

duce flux estimates for

change' ™.

The original Houghton Bookkeeping model uses
ecozones as its modeling units, and hence can only
produce estimates with a minimum geographical unit
at the ecozone level. While such estimates are valua-
ble for understanding carbon dynamics at a regional ,
national and global scale, they lack critical spatial
details needed to support carbon management deci-
sion-making by local authorities and individual land
owners. The same can be said of the results
produced by the BLUE model with a half-degree cell

. [93
size

. To address this limitation, two modified
bookkeeping models have been developed independ-
ently based on the Houghton Bookkeeping model.
One is a spatially explicit bookkeeping model devel-
oped by Tang et al., which has been used to produce
land use-driven carbon estimates at 30- to 500-m

. 99-100
resolutions' ]

. The other is a grid-based carbon
accounting model developed by Gong et al., which
has been used to produce flux estimates driven by
forest change at the 30-m resolution''?’" .

3.3 Inventory-based methods

For countries or regions that have forest inventory
programs designed to produce periodic inventory of

. 101-102
their forest resources' ]

, the inventory data col-
lected through those programs are highly valuable for
deriving forest carbon estimates. The Forest Inventory
and Analysis ( FIA) program of the US Forest
Service, for example, has a network of more than
100,000 plots distributed across the country where
trees are measured at 5- to 10-year intervals''™'®’.
These tree measurements can be converted to growing
stock and biomass carbon using allometric equations

. _ 104-105]
and volume-to-carbon conversion coefficients' ..
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FIA data has been used as a primary data source to
estimate forest carbon dynamics at state, regional,
and national levels for the US!'™"%) Similar studies

have been reported for other countries or regions, in-

112] 113-114)

cluding Canada'"™" | Russia'""? | and Europe'
Given that forest inventory programs typically
collect measurements over large numbers of plots se-
lected using design-based sampling schemes, inven-
tory data can provide comprehensive regional
estimates of carbon fluxes for aboveground carbon
with relatively small errors. Such estimates may serve
as references for evaluating process-based models,
which typically have much larger uncertainties"*"
However, there is no long-term, comprehensive mo-
nitoring data for soil and litter/deadwood at regional
to national scales. Carbon estimates for these pools
are typically estimated using empirical models devel-
oped based on limited data collected over small
study regions, and hence may have much larger un-
certainties than those for the biomass pool. The
Forest Health Monitoring (FHM) program of the US
Forest Service has partially implemented carbon mo-
nitoring for soil and litter/deadwood. This program
requires that additional information on soil, forest
floor and down woody debris be collected for a
subset ( ~8000) of the FIA plots''™'. When remea-
surements for a sufficient number of plots become
available, uncertainties in the estimates derived
using inventory-based methods should be greatly re-
duced.
3.4 Synthesis and good practice approaches
Each of the carbon calculation methods discussed
above has its own strengths and limitations. In parti-
cular, process-based models tend to produce
estimates with larger uncertainties than inventory-
based methods, partly because process-based models
can differ in terms of the processes included, the
types of algorithms employed to represent those
processes, and the choices of input data. Large dis-
crepancies existed among estimates derived using
more than a dozen process-based models over North
America'®' . In order to better constrain the bounda-

ries of carbon estimates, most carbon studies use

multiple methods to derive flux estimates at regional

to global scales. For example, Bastos et al. used a
top-down approach and a total of 16 land surface
models to evaluate the impact of the 2015/2016 El

B Tupek et al.

Nifio on the terrestrial carbon cycle
compared an inventory-based method with three
process-based models to evaluate forest carbon fluxes

") Hayes et al. combined results de-

over Europe{
rived using top-down approaches, inventory data,
and a suite of diagnostic and prognostic models to
reconcile the contemporary carbon balance over

[33]

North America Many estimates of the global

budget were derived by synthesizing results derived
using multiple methods' ',

Given the large number of available carbon cal-
culation methods and the various issues they have,
IPCC  developed
national greenhouse gas inventories, which will be

referred to as the IPCC Guideline hereafter'®. Over
a land area, the net flux (AC) is calculated as the

comprehensive  guidelines for

sum of carbon changes in aboveground biomass
(AC,; ), belowground biomass ( AC,, ), dead
organic matter ( AC,,, including litter and dead
wood ) , Harvested Wood Products ( AC,y, ), and
soil (AC,;) (Fig.1)

AC=AC ,+AC L +AC o +AC 1y TAC

To accommodate the different levels of technical

soil

readiness of different countries, a three-tiered ap-
proach is provided for estimating these quantities.
Tier 1 methods are the simplest to use, with
equations and default parameter values (e.g., emis-
sion and stock change factors) readily available from
the IPCC Guideline book. The same methodological
approach is used in Tier 2. Where available, howev-
er, country-or region-specific data should be used,
which in general should be more appropriate for the
climatic regions, land-use systems, and livestock
Often, higher

temporal and spatial resolutions and more disag-

categories in the study region.

gregated activity data are also used in Tier 2. In Tier
3, higher order methods that can provide estimates
of greater certainty than lower tiers are used. These
include models and inventory measurement systems
tailored to address national circumstances, repeated

over time, driven by high-resolution activity data,
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and disaggregated at a sub-national level.
Based on the IPCC Guideline, many countries

developed comprehensive carbon inventory methods

Canada' " |
[12

and datasets, including the ust

119 0
J !, Because

Australia'"™ | and European countries
good inventory data in general can provide more ac-
curate estimates, they are used frequently when
available. For example, the forest carbon accounting
framework of the US is fundamentally driven by the
annual forest inventory conducted by the FIA
program. Many developing countries, however, may
need additional help in order to follow the TPCC
Guideline to develop their own carbon inventory ca-

pabilities" "

4 Opportunities from Remote Sensing

With the ability to cover all land areas of the Earth’s
surface in a relatively short time, satellite remote
sensing has become indispensable for carbon studies.
Remote sensing observations have been used to
derive many quantities/variables related to various
carbon pools and/or processes, including vegetation
status, vegetation dynamics, ecosystem fluxes, soil
properties, meteorological variables, and atmospheric
carbon (Tab.2). Comprehensive reviews of efforts
dedicated to the retrieval of these properties using
remote sensing technology over multiple decades
have been provided in Literatures[ 14 ] and [ 122].
Progress in the remote sensing of specific surface
properties or variable groups has also been discussed
in Literatures [ 123 ]—[ 126].

Despite the large array of methods available for
deriving carbon estimates, quantification of forest
carbon dynamics remains challenging. Currently,
most process-based models can only produce carbon
estimates with large uncertainties at coarse spatial
resolutions or for very large regions. They are not
mature enough for use in MRV systems needed to
support REDD+ or other forest-related climate miti-
gation programs or initiatives. The inventory-based
methods, though they may produce more accurate
estimates, can only be used by countries/regions
that have good inventory data. The good practice ap-
proaches recommended by the IPCC are flexible

enough to be used by all countries. When implemen-
ted using fine spatial grids, these methods could
produce flux estimates with critical spatial details
needed to calculate carbon credits and support
carbon management at local or individual land owner
levels[#10. 1271
Tab.2 A partial list of variables/parameters important
for estimating forest carbon dynamics that may

be derivable using remote sensing technology

General category Variable list

.. Foliar nitrogen, chlorophyll, lignin concentration,

Plant characteristics ) )
leaf area, leaf water content, stress/drought

. Stand age, species composition, canopy cover,

Vegetation status K i

height, volume, biomass

. . Land cover/use change, disturbance, manage-
Vegetation dynamics
ment, harvested wood products, growth rates

SIF, GPP, NPP, NEP, NBP/NEE, FAPAR,
ER

Soil moisture, nutrient, soil organic carbon

Ecosystem fluxes

Soil properties
Precipitation, temperature ( including LST),
ET, VPD, PAR

Atmospheric carbon CO,, CH,

Meteorological

variables

For terrestrial ecosystems, carbon accounting is
concerned with carbon changes in five pools;
aboveground biomass, belowground biomass, dead
organic matter, soil, and harvested wood products.
Fluxes between these pools are estimated directly or
indirectly based on biomass and forest disturbance
data (Tab.3). The sections below examine opportu-
nities offered by existing and forthcoming remote
mapping

biomass and a suite of variables related to forest

sensing capabilities  for aboveground
change, including the location, timing, type/cau-
sality, and intensity of forest disturbance as well as
harvested wood products.

4.1 Relevant remote sensing capabilities
Landsat has been the primary system for monitoring
the Earth’ s surface with sub-hectare details for much
of the decades dating back to the 1970s'"*"®’ | which
will continue with the successful launch of Landsat 9
in 2021. A number of systems launched during the
past decade greatly enhanced this monitoring capa-
bility, including two Sentinel-2 satellites, two Senti-

nel-1 satellites, the ICESAT-2 Satellite, and the
Global Ecosystem Dynamics Investigation ( GEDI)
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mission. Although there are many other optical and
SAR missions that can support forest carbon monito-
ring! """ these are the major missions designed
with the intent of achieving wall-to-wall imaging or
comprehensive sampling of all land areas of the
globe. Following the free-data policy of the Landsat
established in 2008'"*?! | observations acquired by
these missions are freely available for public use,
making it possible to produce carbon estimates for
any region of the globe at a relatively low cost. Senti-
nel-2 observations are highly comparable to Landsat

133]

data'"*’. Sentinel-1 provides C-band radar data sys-

tematically acquired across the globe on a quasi-ten-
day basis'"™*'. GEDI and ICESAT-2 provide dense
samples of LiDAR-based vegetation structure meas-
urements that have footprint sizes comparable to
those of Landsat and Sentinel data and are well dis-

tributed across the globems'”ﬂ .

Tab.3 General methods and input data required for es-
timating major carbon pools of terrestrial ecosys-
tems (based on IPCC®!)

Carbon pools Estimation methods/input data

. Ground measurements, remote sensing,
Aboveground biomass .
land use/ disturbance

. No change, or modeled based on
Belowground biomass .
aboveground biomass

. No change, or modeled based on land
Dead organic matter .
use/disturbance data

No change, or modeled based on land

Soil .
use/ disturbance data
Harvested wood FAO database, survey data, remote
products sensing based

4.2 Forest structure and biomass mapping

Aboveground biomass is one of the most valuable
products for carbon studies, because it can be
directly related to landscape carbon, and can
provide a constraint for both growth models and the

[137-138) 4o

calculation of emissions from disturbance
also often used to estimate carbon in belowground bi-
omass and dead organic matter, which are difficult
to derive directly using remote sensing observations.
Of the three remote sensing instrument types—
optical, radar, and LiDAR, LiDAR can provide
metrics that are directly related to forest structure

and height'""" | and hence has the best potential

. S [1414142
for biomass estimation® I

Methods have been
developed for identifying individual trees using high
density point cloud LiDAR data"*"*/. Vegetation
species information could also be used to improve Li-

DAR-based biomass L)
current spaceborne LiDAR systems, including ICE-

estimation However,
SAT-2 and GEDI, can only collect samples along
their tracks. These samples need to be used together
with wall-to-wall observations to create spatially con-
tiguous map products. Approaches like the Field-
Airborne-Spaceborne ( FAS) method developed by
Pang et al. are often used to integrate field measure-
ments, airborne LiDAR data, and satellite imagery

: [146-147]
to create biomass maps .

In general, radar is more sensitive to vegetation
structure than optical systems. While radar offers
promise for predicting forest biomass and for
mapping general forest types and tree species in flo-

ristically simple landscapes' """

, radar signal sa-
turates at mid- to high-biomass levels, with the loca-
tion of the saturation point being wavelength depend-

[150, 152-161]

ent . Although optical remote sensing data

may not be as sensitive to forest structure and
biomass as LiDAR and radar data'''®" | they have
proved to be useful for mapping forest biomass over
large areas. For example, texture information derived
from high resolution imagery was found useful for es-
timating  biomass''®’.  Landsat-based  biomass
products have been developed for selected areas in
the US"'®’ interior Alaska''®', Canadian boreal
1) and the conterminous US!'®*') . Field

data and/or LiIDAR measurements from the ICESAT-

1 mission have been used to calibrate MODIS obser-
169-171]

forests

vations to develop biomass maps for the US'
. [172-173]
China s

regions over multiple continents

’

tropical ~ Africa™ | and
[175]

tropical
Similarly, a
30-m biomass map has been developed for China
based on Landsat spectral data and ALOS/PALSAR
radar imagery calibrated using field inventory data
and ICESAT-1 forest height estimates''".

Given the large quantities of LIDAR samples be-
ing collected by ICESAT-2 and GEDI, these samples
will allow for more robust calibration/validation of

mapping algorithms at regional to global scales'"".
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Efforts have been made to establish models for esti-
mating biomass from GEDI metrics'”*'. GEDI/ICE-
SAT-2 measurements are being used with
observations from Landsat and other missions to im-
prove biomass mapping in an ever-growing number of

[179-182]

studies . Since LiDAR metrics are directly re-

lated to several structural attributes, including
canopy cover and a suite of height metrics, they can
be used together with optical and/or radar images to
map those attributes. For example, LiDAR samples
have been used to calibrate Landsat time series data
to map forest height' """ The dense and globally-
distributed LiDAR samples collected by GEDI were
crucial to the development of a global 30-m tree

185 " GEDI measurements have also been

height map'
used together with VIIRS observations to produce a
suite of forest structure attributes for CONUS, inclu-
ding canopy cover, height, plant area index, and

%) Height and other structural

height diversity index"
variables have been used to reduce uncertainties in
biomass modeling or to produce biomass estimates di-
rectly based on allometric equations' "™ "*

4.3 Forest disturbance monitoring

With its first satellite launched in 1972, the Landsat
mission has produced a fine resolution imagery record
of the Earth’ s surface for half a century. Landsat data
has been used to map land cover and various surface
characteristics in numerous studies' ™' The multi-
decadal time series observations provided by Landsat
are especially valuable for understanding the carbon
dynamics related to land use change. Since 2003,
efforts  to

Goward and colleagues have led

characterize US forest disturbances using time series

[22, 189-192

Landsat observations ! These studies became

known as the North American Forest Dynamics
(NAFD) study,which has been identified as a core
project of the North American Carbon Program.

Major NAFD products include forest disturbances

[193

mapped at an annual time step''®’ | which were de-

rived using the Vegetation Change Tracker ( VCT)

algorithm and a 30-year surface reflectance
{91 VCT detects anomalous events in the

record
per-pixel spectral time series caused by forest dis-

turbances, including harvest/logging, fire, storm

damages, and insect outbreaks''®”). VCT disturbance
products have been validated through many stud-
L 190192, 194197

In addition to the NAFD products, several other
geospatial datasets have been developed to provide
information on specific disturbance types at national
or sub-national scales. In particular, the Monitoring
Trends in Burn Severity (MTBS) project''™ | a col-
laboration between the US Forest Service and USGS,
has mapped the extent and severity of large fires
across the United States using ground-based fire re-
cords and Landsat images acquired from 1984 to pres-
ent. The US Forest Service has been producing Aerial
Detection Survey ( ADS) sketch maps recording the
location ( polygons) of insect outbreaks, which can
be used to produce consolidated data products on in-

199-200] .
. Hurricane and tornado

sect-related mortality'
tracks have been recorded by NOAA as early as
1851. Combining these tracks with wind models
allows for the assessment of wind damages from trop-
ical storms ™'

During the past decade or so, many other algo-
rithms designed for detecting forest change using time
series Landsat data emerged, including LandTren-

202203 . . iy
dr! "', continuous change detection and classifica-

tion (CCDC) "™ | composite2change (C2C) ")
Exponentially Weighted Moving Average Change De-
tection ( EWMACD )" Vegetation Regeneration
and Disturbance Estimates through Time ( VR-
DET) "® | and Image Trends from Regression Anal-
ysis (ITRA) ™. A comprehensive assessment over
6 regions selected from across the US showed that
most of these algorithms had large commission and
omission errors, although results with slightly better
and more balanced accuracies could be derived by
combining these algorithms using ensemble approa-
ches'". Building on the CCDC algorithm, the
USGS is developing an integrated approach for Land
Change Monitoring, Assessment, and Projection
(LCMAP) " which is intended to map land cover
and change on an annual basis'®""'. Globally, forest
changes have been mapped based on multi-temporal

212- 213
tree cover pr()du(:ts( !

With radar becoming increasingly —more
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available and affordable, radar time series observa-
tions have been wused to derive forest change
products. Many studies demonstrated the feasibility
of using radar data together with time series Landsat

. . 214217
observations to map forest disturbance! ", recov-

ery " | and biomass dynamics'*"**"

2014 and 2016, the pair of Sentinel-1 satellites have

produced a global archive of dense time series radar

. Launched in

observations unaffected by cloud or solar illumination
conditions. These observations have revisit intervals
of 12 days or less for most of the land areas of the
globe, making it possible to map forest harvest on a

2] When produced on a near-

monthly basis'
realtime basis, such monthly forest change maps can
serve as alert products that can be used by local au-
thorities to halt or intervene with deforestation activi-
ties as those activities are happening * .

4.4 Other disturbance attributes

Most disturbance mapping algorithms focus on iden-
tifying the location and timing of forest disturbances.
The carbon fluxes arising from those disturbances are
affected by disturbance type or attribution, disturb-
ance intensity, as well as carbon influx to harvested
wood products. Some progress has been made in de-
riving these products. Schroeder et al. demonstrated
that fire and clearcut harvest could be separated

24 7Zhao et al. used

using Landsat time series data
support vector machines to identify the causality of
disturbances mapped by VCT'*'. Schroeder et al.
developed an approach for mapping six disturbance
types based on the shape of the temporal profiles of
time series Landsat data”’. Building on the NAFD
disturbance products, Schleeweis et al. mapped
forest disturbance types/causal agents across the

( CONUS ) from 1986 to

2010%"). Time series-based methods have also been

conterminous U. S.

developed for mapping disturbance attribution for
Canadian forests ™'

Many disturbance mapping algorithms use spec-
tral change ( SC) indices to detect disturbance
events. These indices represent the spectral manifes-
tation of the impact of the detected events, and
therefore might be indicative of the severity of those

events. For example, Huang et al. grouped disturb-

ance pixels into four intensity levels based on a
change magnitude calculated using the integrated

. 196
forest Z-score index'

I Senf and Seid] used logistic
regression to identify four disturbance severity levels
based on a set of SC indices calculated using the
Land Trendr algorithm' ™" . Ground measurements are
often needed to convert these SC indices to estimates
of disturbance severity measured using physical
quantities. For example, field survey data are often
used to convert spectral burn indices to ground esti-
mates of burn severity represented using a composite

‘B122] By using field measurements col-

burn index
lected by the Forest Inventory and Analysis ( FTA)
program of the US Forest Service as calibration data,
Tao et al. estimated the percentage of basal area re-
moval (PBAR) as a measure of disturbance intensity
for disturbance events detected by the VCT algorithm
over North Carolina'*’. Building on that study, Lu
et al. developed a CONUS-wide disturbance intensity
dataset'*.

While fire typically results in an immediate re-
lease of most of the carbon stored in aboveground bi-
omass into the atmosphere, timber harvest transfers
large portions of the aboveground carbon to the Har-
vested Wood Product ( HWP ) pool, which is
released to the atmosphere gradually over decades or
longer'"'® #**) Carbon fluxes related to the HWP are
therefore important components of forest carbon dy-
namics. The IPCC methods use data provided by the
FAO, which provides HWP estimates at the national
level for many countries/regions. In the United
States, reports on timber product output (TPO) are
produced by the FIA program through surveying

235]

wood processing mills' ™', These TPO reports make
it possible to derive estimates of carbon stored in
wood products at county or state levels''"" **' Un-
fortunately, the availability of historical TPO data is
highly inconsistent among different states, making it
difficult to derive consistent and accurate estimates
of carbon stocks and fluxes at regional to national

15271 However, the available survey data

scales
could be used together with remote sensing-based
disturbance data to produce HWP estimates that are
consistent.  For

spatially and temporally more
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example, available TPO survey data were used to

calibrate VCT disturbance products to produce an

annual, multi-decadal ( 1986—2015) TPO record

[19

for North Carolina''®" | which was then used to esti-

mate the influx of harvested carbon to wood prod-
ucts' ™%

4.5 Forthcoming opportunities

Sentinel-1 marks the beginning a new era of no-cost
access by the general public to a global archive of
systematically-acquired SAR observations. Two new
SAR missions with planned launch dates in 2023
likely will also adopt similar no-cost access policies.
One is the NASA-ISRO SAR ( NISAR) mission
being developed by NASA in partnership with ISRO.
The other is the BIOMASS mission of the European
Space Agency ( ESA). NISAR will provide global
L-band observations with a 12-day repeat'**'. BIO-
MASS will deliver crucial information on forest
carbon dynamics using P-band observations acquired

12402411 Along with the ex-

with a 3-day repeat cycle
isting remote sensing capabilities discussed in
section 4.1, these two systems will open new oppor-
tunities to advance forest carbon research in several
ways.

Given that L-band is more sensitive to high bio-
mass densities than C-band while P-band can pene-

221 one of the

trate denser canopies than L-band'
most important improvements provided by the NISAR
and BIOMASS missions will be the development of
better forest structure and biomass products. Many
local studies have demonstrated the value of using
multi-band radar data to improve forest monito-

124325) Wit large quantities of LIDAR samples

ring
being collected by GEDI and ICESAT-2 across the
globe, integrated use of these samples with observa-
tions acquired by Sentinel-1 (C-band), NISAR (L-
band ), and BIOMASS ( P-band ) will make it
possible to derive more accurate forest structure and
biomass products for any region of the globe than
currently possible over a wide range of biomass lev-
els.

One of the uncertainty sources in estimating bi-
omass is the lack of information on wood-specific

gravity ' | which is often forest type/species de-

pendent. SAR data acquired by the forthcoming NI-
SAR and BIOMASS missions may allow for better
mapping of forest species composition. Many studies
have demonstrated the usefulness of SAR data for

#7281 Wolter and Townsend

mapping forest type{
showed that both C-band ( Radarsat-1) and L-band
(PALSAR) variables were sensitive to the composi-
tion and abundance of specific species'*. Use of
SAR imagery with optical data to improve forest type
classification has been a focus of many stud-
{eg | 250252]

Since radar in general is not affected by clouds,
the global systematic acquisition capabilities of Sen-
tinel-1, NISAR, and BIOMASS will produce valid
observations regardless of solar illumination or at-
mospheric conditions on a sub-weekly basis across
the globe throughout the year. The temporal density
of these observations, uncontaminated by cloud or
solar illumination conditions, will provide unprece-
dented temporal details for determining surface phe-
nology. It has been demonstrated that phenology met-
rics derived using SAR data are comparable to those
derived based on optical data'®***) | and SAR ob-
servations may provide a unique perspective for
characterizing the phenology of tropical™’ and

boreal forests'>*

. Further, due to rapid vegetation
growth following disturbances in many regions, dis-
turbance events are often better detected using ob-
servations acquired immediately after those events.
Therefore, the high temporal resolutions provided by
the forthcoming SAR missions likely will allow for
more accurate detection of forest disturbances.

4.6 Need for more and better ground data

Despite the large amount of high-quality LiDAR
GEDI  and

ICESAT-2, many of the products needed to quantify

measurements being collected by

forest carbon dynamics cannot be derived without

ground measurements. For example, although

LiDAR metrics are sensitive to tree height and other

[257-259]

structural variables , ground biomass measure-

ments are needed to establish relationships between

biomass and LiDAR metrics >

Linking ground
measurements with space LiDAR samples often re-

quires LiDAR data acquired by airborne sys-
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ms" ' *"hecause the chance for GEDI or other

te
spaceborne LiDAR systems to sample over plot loca-
tions where ground measurements already exist is ex-
tremely low. In order to account for variations in
these relationships, the GEDI team has developed a
database of ground-based biomass measurements,
which have been used to calibrate relationships be-
tween GEDI LiDAR metrics for different regions and

178
I However, there are many

plant functional types'
gaps in the current database. More samples of ground
biomass measurements are needed for those gap areas
in order to improve the global representativeness of
the database.

Similarly, ground samples are needed to establish
relationships between disturbance severity and change
metrics derived from satellite observations. For the US
and other countries that have forest inventory
programs that mandate remeasurements over prese-
lected plot locations at specified time intervals,
those remeasurements could be used to calculate dis-
turbance severity over plots where disturbances oc-

[233]

curred between two measurements However,

because most existing inventory programs are
designed to assess the status of forest resources using
samples  selected  following  probability-based
sampling methods, and forests subject to measurable
disturbances within a few years are typically small
fractions of all forestland in most regions, the
number of plots from two consecutive inventories that
could be used to calculate disturbance severity for
actual disturbance events is often very small. As a
result, those programs may not be able to provide
enough samples for quantifying disturbance severi-
ty[262].

intensify field sampling over disturbed areas. Given

One way to mitigate this problem is to

available resources, this could be achieved through
well-coordinated field campaigns for cases when the
timing and location of certain disturbance events (e.
g., planned harvest) are known before the occurrence
of those events. Given that the occurrence of natural
disturbances is often unpredictable, conducting
fieldwork immediately after those disturbances over

areas that had pre-disturbance measurements will be
highly valuable'**>*/.

For forests that are subject to timber harvest,
the amount of harvested wood product determines the
fate of a significant portion of removed forest biomass

HWP

estimates are only available at the national level. The

carbon. For many countries, however,
TPO survey data collected by the FIA program make
it possible to develop models for estimating carbon
stored in wood products at county or state lev-

110, 236 . .
(10,2361 - However, because different countries

els
likely have different timber harvest practices, rela-
tionships between HWP and satellite-based disturb-
ance estimates may be different for different
countries. Therefore, use of models developed in one
state/country to derive sub-national TPO estimates
for other countries may not be appropriate. Use of
the methods developed by Huang et al.'™® to derive
sub-national HWP estimates for other countries will
require that those countries collect at least some
ground-based HWP data similar to the FIA TPO sur-

vey data, which are needed to calibrate and validate

the TPO estimation algorithm.
S Summary

Remote sensing provides an indispensable tool for
advancing carbon studies. Data products derived
based on remote sensing observations are key inputs
to a wide range of models and methods developed for
quantifying carbon budget at all levels. Forest carbon
inventory methods recommended by the IPCC Guide-
line require biomass data and a suite of forest dis-
turbance products. Significant progress has been
made in deriving these products by leveraging
publicly available remote sensing assets, including
the long-term imagery record produced by the
Landsat mission and observations acquired by several
new systems launched within the past decade, inclu-
ding Sentinel-2, Sentinel-1, GEDI, and ICESAT-2.
By the time the L-band NISAR and P-band
BIOMASS missions are launched in 2023, the
Earth’ s land surface will be imaged by optical and
multi-band (including C-, L-, and P-bands) radar
systems designed to provide global, sub-weekly ob-
servations at sub-hectare spatial resolutions for

public use.
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Many algorithms have been developed for map-
ping forest disturbances, determining disturbance at-
tribution, quantifying disturbance intensity, and es-
timating harvested timber volume. Although the large
quantities of globally-distributed LiDAR samples
being collected by GEDI and ICESAT-2 can provide
much needed reference data critical for calibrating
mapping algorithms and validating derived map prod-
ucts, a number of physical quantities needed for cal-
culating forest carbon fluxes cannot be derived from
satellite observations without ground-based calibration
data. These include biomass, disturbance severity,
and harvested wood products. Other important quan-
tities that are more difficult to derive from remote
sensing data include dead organic matter and soil
carbon. Carefully-designed inventory programs are
required in order to collect data needed to estimate
these quantities or to provide reference data
necessary for calibrating and validating satellite-
based estimates.

While the IPCC provides guidelines for carbon
inventory at the national scale, carbon trade and
other market-driven tools that may help achieve cli-
mate mitigation goals through forestry-based carbon

management projects require carbon estimates at

List of Abbreviations/Acronyms

local or even individual land owner levels. Given
that increasingly more fine scale biomass and forest
change products will be derived based on existing
and forthcoming satellite observations, models that
can use these products to produce fine scale carbon
fluxes are emerging. In addition to the grid-based
carbon accounting models developed by Tang et

a], [99-100) 1.0127)

and Gong et a , improvements are also

being made to other models to enable derivation of

25 These evolving mod-

fine scale carbon estimates'
eling capabilities will allow for more robust MRV for
REDD+ or other projects aimed at achieving climate
mitigation goals through forest management.
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ADS Aerial Detection Survey

ALOS Advanced Land Observing Satellite

BEPS Boreal Ecosystem Productivity Simulator
Biome-BGC Biome-BioGeochemical Cycles

BLUE Bookkeeping for Land Use Emission

Cc2C Composite2Change

IBIS Integrated Biosphere Simulator

CASA Carnegie-Ames-Stanford Approach

CASA GFEDv2 Global Fire Emissions Database, Version 2
CCDC Continuous Change Detection and Classification
CLM Community Land Model

CLM-CN Carbon-Nitrogen

CONUS Conterminous U.S.

Ccop Conference of the Parties

DLEM Dynamic Land Ecosystem Model

DNDC DeNitrification and DeComposition
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ED

ER

ET
EWMACD
FAO
FAPAR
FHM

FIA
FIRE-BGC
FORCLIM

FOREST-BGC

FVS
GEDI
GPP

GiC y~!
HWP
ICESAT-2
InTEC
IPCC
ISAM
ISRO
ITRA
LANDIS
LandTrendr
LCMAP
LPJ-wsl
LST
MRV
MTBS
NAFD
NBP
NEE
NEP
NISAR
NPP
ORCHIDEE
PALSAR
PAR
PBAR
REDD+
SC

SiB3

SIF

TEM

Ecosystem Demography

Ecosystem Respiration

Evapotranspiration

Exponentially Weighted Moving Average Change Detection
Food and Agriculture Organization

Fraction of Absorbed Photosynthetically Active Radiation
Forest Health Monitoring program

Forest Inventory and Analysis program

FIRE BioGeoChemical succession model

A Climate-sensitive Forest succession ( “gap”) Model
Forest BioGeoChemical model

Forest Vegetation Simulator

Global Ecosystem Dynamics Investigation

Gross Primary Production

Gigaton Carbon per year

Harvested Wood Products

Ice, Cloud and land Elevation Satellite-2

Integrated Terrestrial Ecosystem C-budget model
Intergovernmental Panel on Climate Change

Integrated Science Assessment Model

Indian Space Research Organisation

Image Trends from Regression Analysis

Landscape Disturbance and Succession model
Landsat-based Detection of Trends in Disturbance and Recovery
Land Change Monitoring, Assessment, and Projection
Lund-Potsdam-Jena-wald, schnee, landschaft model
Land Surface Temperature

Monitoring, Reporting, and Verification

Monitoring Trends in Burn Severity

North American Forest Dynamics

Net Biome Production

Net Ecosystem Exchange

Net Ecosystem Production

NASA-ISRO SAR mission

Net Primary Production

Organising Carbon and Hydrology In Dynamic Ecosystems model
Phased Array L-band Synthetic Aperture Radar
Photosynthetically Active Radiation

Percentage of Basal Area Removal

Reducing Emissions from Deforestation and Forest Degradation in Developing Countries

Spectral Change
Simple Biosphere Model, Version 3
Solar-Induced Chlorophyll Fluorescence

Terrestrial Ecosystem Model
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TPO Timber Product Output
UNFCCC United Nations Framework Convention on Climate Change
VCT Vegetation Change Tracker
VIIRS Visible Infrared Imaging Radiometer Suite
VPD Vapor-Pressure Deficit
VRDET Vegetation Regeneration and Disturbance Estimates through Time
Global carbon budget 2020[ J]. Earth System Science Data,
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